Part Number Hot Search : 
T960012 555K11 NCP58 TLGD175 AK4964Z ZT483EEP D35SB100 4056E
Product Description
Full Text Search
 

To Download APT50GS60BRDQ2G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  absolute maximum ratings thermal and mechanical characteristics single die igbt with separate dq diode die symbol parameter min typ max unit p d total power dissipation t c = @ 25c 415 w r jc junction to case thermal resistance igbt 0.30 c/w diode 0.67 r cs case to sink thermal resistance, flat greased surface 0.11 t j , t stg operating and storage junction temperature range -55 150 c t l soldering temperature for 10 seconds (1.6mm from case) 300 w t package weight 0.22 oz 5.9 g torque mounting torque (to-247), 6-32 m3 screw 10 inlbf 1.1 nm symbol parameter rating unit i c1 continuous collector current t c = @ 25c 93 a i c1 continuous collector current t c = @ 100c 50 i cm pulsed collector current 1 195 v ge gate-emitter voltage 30v v ssoa switching safe operating area 195 e as single pulse avalanche energy 20 mj t sc short circut withstand time 3 10 s i f diode continuous forward current t c = 25c 90 a t c = 100c 55 i frm diode max. repetitive forward current 195 typical applications zvs phase shifted and other full bridge half bridge high power pfc boost welding induction heating high frequency smps features fast switching with low emi very low e off for maximum ef ? ciency short circuit rated low gate charge tight parameter distribution easy paralleling rohs compliant the thunderbolt hs ? series is based on thin wafer non-punch through (npt) technology similar to the thunderbolt ? series, but trades higher v ce(on) for signi ? cantly lower turn-on energy e off . the low switching losses enable operation at switching frequencies over 100khz, approaching power mosfet performance but lower cost. an extremely tight parameter distribution combined with a positive v ce(on) temperature coef ? cient make it easy to parallel thunderbolts hs ? igbt's. controlled slew rates result in very good noise and oscillation immunity and low emi. the short circuit duration rating of 10 s make these igbt's suitable for motor drive and inverter applications. reliability is further enhanced by avalanche energy ruggedness. combi versions are packaged with a high speed, soft recovery dq series diode. thunderbolt ? high speed npt igbt with anti-parallel 'dq' diode to-247 d 3 pak apt50gs60brdq2(g) apt50gs60srdq2(g) 600v, 50a, v ce(on) = 2.8v typical apt50gs60brdq2(g) apt50gs60srdq2(g) microsemi website - http://www.microsemi.com 052-6300 rev b 3-2012 caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. downloaded from: http:///
symbol parameter test conditions min typ max unit v br(ces) collector-emitter breakdown voltage v ge = 0v, i c = 2.0ma 600 v ? v br(ces) / ? t j breakdown voltage temperature coeff reference to 25c, i c = 2.0ma 0.60 v/c v ce(on) collector-emitter on voltage 3 v ge = 15v i c = 50a t j = 25c 2.8 3.15 v t j = 125c 3.25 v ec diode forward voltage 3 i c = 50a t j = 25c 2.15 t j = 125c 1.8 v ge(th) gate-emitter threshold voltage v ge = v ce , i c = 1ma 345 ? v ge(th) / ? t j threshold voltage temp coeff 6.7 mv/c i ces zero gate voltage collector current v ce = 600v, v ge = 0v t j = 25c 50 a t j = 125c 1000 i ges gate-emitter leakage current v ge = 20v 100 na symbol parameter test conditions min typ max unit g fs forward transconductance v ce = 50v, i c = 50a 31 s c ies input capacitance v ge = 0v, v ce = 25v f = 1mhz 2635 pf c oes output capacitance 240 c res reverse transfer capacitance 145 c o(cr) reverse transfer capacitance charge related 4 v ge = 0v v ce = 0 to 400v 115 c o(er) reverse transfer capacitance current related 5 85 q g total gate charge v ge = 0 to 15v i c = 50a, v ce = 300v 235 nc q ge gate-emitter charge 18 g gc gate-collector charge 100 t d(on) turn-on delay time inductive switching igbt and diode: t j = 25c, v cc = 400v, i c = 50a r g = 4.7 6 , v gg = 15v 16 ns t r rise time 33 t d(off) turn-off delay time 225 t f fall time 37 e on1 turn-on switching energy 7 tbd mj e on2 turn-on switching energy 8 1.2 e off turn-off switching energy 9 0.755 t d(on) turn-on delay time inductive switching igbt and diode: t j = 125c, v cc = 400v, i c = 50a r g = 4.7 6 , v gg = 15v 33 ns t r rise time 33 t d(off) turn-off delay time 250 t f fall time 23 e on1 turn-on switching energy 7 tbd mj e on2 turn-on switching energy 8 1.7 e off turn-off switching energy 9 0.950 t rr diode reverse recovery time i f = 50a v r = 400v di f /dt = 200a/ s 25 ns q rr diode reverse recovery charge 35 nc i rrm peak reverse recovery current 3 a static characteristics t j = 25c unless otherwise speci ? ed dynamic characteristics t j = 25c unless otherwise speci ? ed apt50gs60b_srdq2(g) 052-6300 rev b 3-2012 downloaded from: http:///
v ce(on) , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics figure 2, output characteristics v ge , gate-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) figure 3, transfer characteristics figure 4, on state voltage vs gate-to- emitter voltage t j , junction temperature (c) gate charge (nc) figure 5, on state voltage vs junction temperature figure 6, gate charge v ce , collector-to-emitter voltage (v) t c , case temperature (c) figure 7, capacitance vs collector-to-emitter voltage figure 8, dc collector current vs case temperature c, capacitance ( p f) v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) i c, dc collector current(a) v ge , gate-to-emitter voltage (v) v ce , collector-to-emitter voltage (v) i c , collector current (a) 0 1 2 3 4 5 6 0 5 10 15 20 25 30 0 2 4 6 8 10 12 6 8 10 12 14 16 0 25 50 75 100 125 150 0 50 100 150 200 250 0 100 200 300 400 500 600 25 50 75 100 125 150 150125 100 7550 25 0 150125 100 7550 25 05 4 3 2 1 0 50001000 100 10 250225 200 175 150 125 100 7550 25 06 5 4 3 2 1 0 1614 12 10 86 4 2 0 100 9080 70 60 50 40 30 20 10 0 v ce = 480v v ce = 300v v ce = 120v 250 s pulse test<0.5 % duty cycle 11v 9v 8v 7v 10v 6v t j = 125c t j = 25c i c = 25a i c = 50a i c = 100a v ge = 15v. 250 s pulse test <0.5 % duty cycle i c = 100a i c = 50a i c = 25a v ge = 15v t j = 125c t j = 25c t j = 150c t j = 125c t j = 25c. 250 s pulse test <0.5 % duty cycle c oes c ies c res v ge = 13 & 15v typical performance curves apt50gs60b_srdq2(g) 052-6300 rev b 3-2012 downloaded from: http:///
i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature switching energy losses mj) e on2 , turn on energy loss ( j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (mj) e off , turn off energy loss ( j) t f, fall time (ns) t d (off) , turn-off delay time (ns) 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 10 20 30 40 50 0 25 50 75 100 125 2018 16 14 12 10 86 4 2 0 100 8060 40 20 0 60005000 4000 3000 2000 1000 0 10 86 4 2 0 300250 200 150 100 50 0 8070 60 50 40 30 20 10 0 25002000 1500 1000 500 06 5 4 3 2 1 0 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 4.7 l = 100 h v ce = 400v v ge = +15v r g = 4.7 r g = 4.7 , l = 100 h, v ce = 400v v ce = 400v t j = 25c , t j =125c r g = 4.7 l = 100 h v ge = 15v t j = 125c, v ge = 15v t j = 25 or 125c,v ge = 15v t j = 25c, v ge = 15v t j = 125c,v ge = 15v t j = 25c,v ge = 15v v ce = 400v v ge = +15v r g = 4.7 t j = 125c, v ge = 15v t j = 25c, v ge = 15v v ce = 400v v ge = +15v r g = 4.7 e on2, 100a e off, 100a e off , 50a e on2 , 50a e on2 , 25a e off, 25a e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a v ce = 400v v ge = +15v t j = 125c r g = 4.7 , l = 100 h, v ce = 400v typical performance curves apt50gs60b_srdq2(g) 052-6300 rev b 3-2012 downloaded from: http:///
rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration i c , collector current (a) figure 20, operating frequency vs collector current z jc , thermal impedance (c/w) f max , operating frequency (khz) v ce , collector-to-emitter voltage (v) v ce , collector-to-emitter voltage (v) figure 17, forward safe operating area figure 18, maximum forward safe operating area i c , collector current (a) i c , collector current (a) 1 10 100 800 1 10 100 800 0.350.30 0.25 0.20 0.15 0.10 0.05 0 200100 10 1 0.1 200100 10 1 0.1 scaling for different case & junction temperatures: i c = i c(t c = 25 c) *( t j - t c )/125 t j = 150c t c = 25c 1ms 100ms v ce (on) dc line 100 s i cm 10ms 13 s t j = 125c t c = 75c 1ms 100ms v ce (on) dc line 100 s i cm 10ms 13 s peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 4.7 75c 100c 0.3 0.9 0.7 single pulse 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 0 10 20 30 40 50 60 70 80 90 160140 120 100 8060 40 20 0 apt50gs60b_srdq2(g) 052-6300 rev b 3-2012 typical performance curves downloaded from: http:///
i c a d.u.t. v ce v cc figure 23, turn-off switching waveforms and de ? nitions figure 22, turn-on switching waveforms and de ? nitions figure 21, inductive switching test circuit t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt40dq60 foot note: 1 repetitive rating: pulse width and case temperature limited by maximum junction temperature. 3 short circuit time: v ge = 15v, v cc 600v, t j 150c 4 pulse test: pulse width < 380 s, duty cycle < 2% 5 c o(cr) is de ? ned as a ? xed capacitance with the same stored charge as c oes with v ce = 67% of v (br)ces . 6 c o(er) is de ? ned as a ? xed capacitance with the same stored energy as c oes with v ce = 67% of v (br)ces . to calculate c o(er) for any value of v ce less than v (br)ces , use this equation: c o(er) = 5.57e-8/v ds ^2 + 7.15e-8/v ds + 2.75e-10. 7 r g is external gate resistance, not including internal gate resistance or gate driver impedance (mic4452). 8 e on1 is the inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on switching loss. it is measured by clamping the inductance with a silicon carbide schottky diode. 9 e on2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on energy. 10 eoff is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. microsemi reserves the right to change, without notice, the speci ? cations and information contained herein. apt50gs60b_srdq2(g) 052-6300 rev b 3-2012 downloaded from: http:///
static electrical characteristics dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. ultrafast soft recovery anti-parallel diode z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.900.80 0.70 0.60 0.50 0.40 0.30 0.20` 0.10 0 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 symbol characteristic / test conditions apt50gs60b2rdq2(g) unit i f(av) maximum average forward current (t c = 103c, duty cycle = 0.5) 30 amps i f(rms) rms forward current (square wave, 50% duty) 43 i fsm non-repetitive forward surge current (t j = 45c, 8.3 ms) 210 symbol characteristic / test conditions min type max unit v f forward voltage i f = 30a 2.8 3.3 volts i f = 60a 3.4 i f = 30a, t j = 125c 2.1 symbol characteristic test conditions min typ max unit t rr reverse recovery time i f = 1a, di f /dt = -100a/ s , v r = 30v, t j = 25 c - 26 - ns t rr reverse recovery time i f = 30a, di f /dt = -200a/ s v r = 667v, t c = 25 c - 320 - q rr reverse recovery charge - 545 - nc i rrm maximum reverse recovery current - 4 - amps t rr reverse recovery time i f = 30a, di f /dt = -200a/ s v r = 667v, t c = 125 c - 435 -n s q rr reverse recovery charge - 2100 - nc i rrm maximum reverse recovery current - 9 - amps t rr reverse recovery time i f = 30a, di f /dt = -1000a/ s v r = 800v, t c = 125 c - 180 - ns q rr reverse recovery charge - 2975 -n c i rrm maximum reverse recovery current - 28 - amps 052-6300 rev b 3-2012 downloaded from: http:///
t j = 125 c v r = 800v 15a 30a 60a t rr q rr q rr t rr i rrm 600500 400 300 200 100 0 3530 25 20 15 10 50 duty cycle = 0.5 t j = 175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 5045 40 35 30 25 20 15 10 50 1.21.0 0.8 0.6 0.4 0.2 0.0 200180 160 140 120 100 8060 40 20 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average forward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage 200180 160 140 120 100 8060 40 20 0 50004000 3000 2000 1000 0 v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery current vs. current rate of change 0 1 2 3 4 5 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 125 c v r = 800v 60a 15a 30a t j = 125 c v r = 800v 60a 30a 15a t j = 175 c t j = -55 c t j = 25 c t j = 125 c apt50gs60b_srdq2(g) typical performance curves 052-6300 rev b 3-2012 downloaded from: http:///
4 3 1 2 5 5 zer o 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current . t rr - revers e r ecovery time, measured from zero crossing wher e diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero . 0.25 i rrm pearson 2878 current transformer di f /dt adjus t 30 h d.u.t. +18v 0v v r t rr / q rr wavefor m apt10078bll apt50gs60b_srdq2(g) typical performance curves e1 sac: tin, silver, copper to-247 package outline d 3 pak package outline 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 6.15 (.242) bsc 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 3.50 (.138)3.81 (.150) 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) collector(cathode) collector (cathode) emitter (anode) gate 5.45 (.215) bsc dimensions in millimeters and (inches ) 2-plcs. 15.95 (.628)16.05(.632) 1.22 (.048)1.32 (.052) 5.45 (.215) bsc {2 plcs. } 4.98 (.196)5.08 (.200) 1.47 (.058) 1.57 (.062) 2.67 (.105)2.84 (.112) 0.46 (.018) {3 plcs} 0.56 (.022) dimensions in millimeters (inches) heat sink (collector)and leads (cathode) are plated 3.81 (.150)4.06 (.160) (base of lead) drai n (heat sink) 1.98 (.078)2.08 (.082) gate collector (cathode) emitter (anode) 0.020 (.001)0.178 (.007) 1.27 (.050)1.40 (.055) 11.51 (.453)11.61 (.457) 13.41 (.528)13.51(.532) revised8/29/97 1.04 (.041)1.15(.045) 13.79 (.543)13.99(.551) revised 4/18/95 figure 32. diode test circuit figure 33. diode reverse recovery waveform de ? nitions e3 sac: tin, silver, copper 052-6300 rev b 3-2012 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT50GS60BRDQ2G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X